CALCULATOR APPLICATIONS TIPS (FEBRUARY 2019)) Leo Ramirez Sr. (The Wizard Maker) www.rammaterials.com

For more teaching tips, visit the STORE and look for instructional Calculator Applications workbooks.

1. A canoe travels 15 miles downstream in 4 hours. In the same time it can travel 9 miles upstream. Calculate the rate of the current in miles per hour.

1=____ mph

Let R = rate of the canoe in still water ; C = rate of the current

	Distance	Rate	Time
Downstream	15	R + C	4
Upstream	9	R - C	4

Time x Rate = Distance

4(R + C) = 154(R - C) = 9

4R + 4C = 154R - 4C = 9

Since you are looking for the rate of the current, C, eliminate R by subtracting the bottom equation from the top equation.

(4R + 4C = 15) - (4R - 4C = 9)

8C = 6; C = 6/8 = .750; Answer : .750 mph

2. An ellipse is inscribed in a rectangle with length 521 and width 231. Find the area between the ellipse and the rectangle. 2=_____

Area of rectangle - Area of an ellipse

(length)(width) = '

(semi-major axis)(semi-minor axis)(π)

 $(521)(231) = (521/2)(231/2)(\pi) = 2.58 \times 10^{4}$

 A bicycle tire has an outside diameter of 22 inches. Calculate the number of revolutions this tire makes on a 10 mile bike ride.

3=_____ rev

Note : 1 mile = 5280 feet ; 1 foot = 12 inches

10 miles = 10(5280)(120)

Circumference = 2π (radius) = π (diameter)

 $= \pi(22)$

Number of revolutions = $\frac{10(5280)(120)}{22\pi}$ = 9.17 x 10³

4. Calculate the area of a regular octagon with a side of 219 inches and an apothem of 264.35663.

4=_____ in

Area = (1/2)(apothem)(perimeter)

Area = $(1/2)(264.35663)(8 \times 219) = 2.32 \times 10^{5}$

5. Taylor deposits \$4,000 into an account that earns 4 $\frac{1}{2}$ % compounded annually. Calculate the number of years

it would take to have at least \$10,000 in the account. 5=_____ (INT)

A(t) = P(1 + $\frac{r}{n}$) ^m, where A(t) is amount at time, t ;

P = principal; r = rate as a decimal, n = number of intervals; t = time

$$10000 = 4000(1 + \frac{.045}{1})^{t(1)}$$

 $10000 = 4000(1.045)^{t}$

When solving for an exponent, find the common logarithm of both sides.

 $\frac{10000}{4000}$ = 1.045 ^{*t*}

Log(1.045 ') = $Log(\frac{10000}{4000})$ Note : Log(P) '' = nLogP tLog(1.045) = $Log(\frac{10000}{4000})$ t = $\frac{Log(\frac{10000}{4000})}{Log(1.045)}$ = 20.8 ; Integer answer is 21.